ame	Date			Period		
ce Information	$\begin{array}{c} & \\ & \\ & \\ & \\ & \\ A = \pi r^2 \\ C = 2\pi r \end{array} A = \ell w$	$w \qquad h \qquad b \qquad (h \qquad h \qquad $	h ℓ $V = \ell w h$	$\underbrace{\overset{r}{}}_{V=\pi r^{2}h}^{r}h$	$b \boxed{c} \\ a \\ c^2 = a^2 + b^2$	$2x 60^{\circ} x s 45^{\circ} \sqrt{2s}$ $30^{\circ} \sqrt{3x} s 45^{\circ} \sqrt{2s}$ Special Right Triangles
Referen	The number of degr The measure in deg The sum of the mea	ees of arc in a prees of a straig sures in degre	circle is 360. ght angle is 1 es of the angl	80. les of a trian	gle is 180.	

<u>DIRECTIONS</u>: For #1-6, leave answers in exact terms (using π and/or radicals, if necessary). For #7-10, use approximations for π as directed and show work. Remember to label your answers with correct units of measure when necessary!

- **1.** The radius of a circle is 10. What is the circumference of the circle?
- 2. The radius of a circle is 14. What is the area of the circle?
- **3.** The circumference of a circle is 22π . What is the radius of the circle?
- **4.** The circumference of a circle is 10π . What is the area of the circle?
- **5.** The area of a circle is 49π . What is the radius of the circle?
- **6.** The area of a circle is 24π . What is the circumference of the circle?

- 7. The diameter of a Blu-ray disc is 12 cm. What is the interior area of a Blu-ray disc? (use $\pi \approx 3.14$ and round to two decimal places)?
- 8. William is reading an advertisement for a 180-square inch circular rug. What is the diameter of the rug (use $\pi \approx 3.14$ and round to two decimal places)?

- 9. Which is a better buy an 8-inch pizza for \$10 or a 14-inch pizza for \$16?
 - A. Explain (in words) how you will determine/prove the correct answer:

B. Show work (use $\pi \approx 3.14$, if necessary):

- C. Circle <u>exactly one</u> correct answer: 8-inch pizza for \$10 **OR** 14-inch pizza for \$16
- **10.** A Ferris wheel has a diameter of 70 ft. How far will a rider travel during a four-minute ride if the wheel rotates once every twenty seconds (use $\pi \approx 22/7$)?

<u>DIRECTIONS</u>: Use the following diagram of circle *C* for #11-12. Leave answers in exact terms (using π and/or radicals, if necessary). Show work.

11. What is the area of the shaded region of the diagram?

12. What is the length of XY?

<u>DIRECTIONS</u>: Use the following diagram of circle *C* for #13-14. Leave answers in exact terms (using π and/or radicals, if necessary). Show work

13. What is the area of the shaded region of the diagram?

14. What is the length of \hat{XYZ} ?

<u>DIRECTIONS</u>: Use the following diagram of circle *C* for #15. Leave answers in exact terms (use π and/or radicals, if necessary). Show work.

15. What is the radius of circle *C*?

<u>DIRECTIONS</u>: Use the following diagram of circle C for #16. Leave answers in exact terms (using π and/or radicals, if necessary). Show work.

16. What is the area of the shaded region of the diagram?

<u>DIRECTIONS</u>: Use the following diagram for #17-18. In the diagram, $\triangle ABC \sim \triangle ADE$.

17. What is the scale factor of $\triangle ABC$ to $\triangle ADE$?

18. What is the ratio of the areas of $\triangle ABC$ to $\triangle ADE$?

<u>DIRECTIONS</u>: Use the following diagram for #19-21. In the figure, WX = XZ and XY = YZ. Write your probability answers as simplified fractions or exact decimals.

- **19.** If point A is picked at random on \overline{WZ} , what is the probability that A is between W and Y?
- **20.** If point A is picked at random on \overline{WZ} , what is the probability that A is between X and Z?
- **21.** If point A is picked at random on \overline{WZ} , what is the probability that A is between X and Y?

<u>DIRECTIONS</u>: Use the following scenario for #22-24. Write your probability answers as simplified fractions or exact decimals.

During the afternoon rush period at the 108th Street train station, every 20 minutes an express train arrives and waits 5 minutes to pick up passengers. Six minutes after the express train leaves, a local train arrives and waits 2 minutes to pick up passengers.

22. If a passanger arrives at the 108th Street station at a random time during the afternon rush period, what is the probability that the express train will be waiting at the station?

23. If a passanger arrives at the 108th Street station at a random time during the afternoon rush period, what is the probability that no train will be waiting at the station?

24. If a passanger arrives at the 108th Street station at a random time during the afternoon rush period and sees a train waiting for passengers, what is the probability that the train is a local train?

<u>DIRECTIONS</u>: Use the following diagram (the shapes are rectangles) for #25. Write your probability answer as a decimal rounded to two places.

25. What is the probability that a dart that randomly hits this diagram will hit within the shaded area?

<u>DIRECTIONS</u>: Use the following diagram for #26. Use $\pi \approx 3.14$. Write your probability answer as a decimal rounded to two places.

26. What is the probability that a dart that randomly hits this diagram will hit within the shaded area?